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Reference to the Public Essay 

 

This formal derivation does not duplicate the lengthy arguments 
of the public essay.  Instead, it focuses on the mathematics of 
Metaphysics by Default, treating the essay’s axioms as a formal 
and abstract system.  For justification of the axioms, the reader 
should refer to the public essay itself, at mbdefault.org; with 
special attention to Chapters 9-16. 
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Axioms 
 
 
Axiom 1.  Randomness 
 

The timings of birth and death will be assumed random.  Neither the time of any birth nor the time 
of any death will be known in advance.  The timings will form a simple, random distribution. 

 
Axiom 2.  Steady-State 
 

The population exists in a steady-state environment, where conditions of existence are invariant 
over time.  Hence the population will be seen to remain near a constant average value, when 
viewed over a long period of time. 

 
Axiom 3.  Continuity 
 

Each person is born at a single, definite time; and each person passes away at a single, definite 
time.  Between those two times, the person exists continuously; with no metaphysically significant 
change in composition or personal identity during that interval of existent time. 

 
Here a simple timeline is introduced to illustrate the three axioms stated above. 
 
 

t[1α] 
p[1] 

t[1ω]

time (t)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
 
In Figure 1 we see a single person, p[1].  The rectangular bounding box encloses all space in the person’s 
hypothetical environment.  No persons exist unless drawn explicitly inside the bounding box of that 
environment. 
 
Time ( t ) flows from left to right.   Only one person, p[1], exists.  That person is shown above the timeline.    
 
p[1]  is created at time t[1α].   
 
p[1]’s existence continues as time flows to the right.   
 
p[1] passes away at time t[1ω]. 
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Axiom 4.  Existential Passage 
 

When a person passes away, that person’s existential “moment” is suspended in mortal amnesia 
until such time as a new person is born.  At the time of birth, the suspended existential moment is 
“granted,” subjectively, to the newborn “recipient,” according to this condition:  the receiving 
newborn must be born after the death of the granting person.  This subjective event is known as 
“existential passage.” 

 
Figure 2 illustrates the simplest existential passage. 
 
 
 

t[2α] t[2ω]

p[2] 

t[1α] 
p[1] 

t[1ω]

time (t)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
 
In Figure 2 person p[1] is shown again.  Additionally, another person, p[2], has been added.   
 
We can see that at time t[1ω] person p[1] passes away.  According to Axiom 4 we assume p[1]’s existential 
moment is “suspended” in mortal amnesia at t[1ω].  Also, we can see that p[2] is born after the death of 
p[1].  This implies that  t[2α] occurs after  t[1ω].   
 
Therefore, we can say that in Figure 2 p[1] “grants” existential passage to p[2].  p[2] is therefore the 
“recipient” of the existential passage.  This all follows from Axiom 4. 
 
This existential passage is illustrated in Figure 2 as a dashed line running diagonally from grantor to 
recipient.  (As per Chapter 9 of the public essay at mbdefault.org, the dashed line merely symbolizes the 
subjective event.  No “thing” transfers between p[1] and p[2].)  
 
Axiom 5.  Unique Recipient of an Existential Passage 
 

Axiom 5 is a restriction on Axiom 4:  The only person who can receive an existential passage is 
the first person created after the grantor’s death.  

 
Axiom 6.  The Null Condition 
 

Axiom 6A: 
If at any time no recipient person exists who can satisfy the axioms for receipt of an existential 
passage (Axioms 4 and 5), then no existential passage occurs at that time.  This is a Null 
Condition. 
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Axiom 6B (ex nihilo passage): 
Likewise, if a recipient person is born at a time when no deceased person meets the condition of 
Axiom 4, then a Null Condition also occurs.  The putative recipient in this case receives no 
existential passage at creation. This is known as ex nihilo passage. 

 
The next three figures illustrate Axioms 5 and 6: 
 
 

t[2α] t[2ω]

p[2] 

t[1α] 
p[1] 

t[1ω]

time (t)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
 
In Figure 3 we see that p[1] passes away at time t[1ω].  Also, we see that no person is born after t[1ω].   
This results in a Null Condition according to Axiom 6A.   
 
Likewise, no person is born after p[2]’s death at time t[2ω].  Axiom 6A denies the existential passage, 
either from p[1] to p[2], or from p[2] to p[1].   
 
So no existential passage is granted in Figure 3. 
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t[3α]

t[2α]

p[3] 

p[2] 

p[1] 

t[1ω]

time (t)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 
 
In Figure 4, p[1] passes away at time t[1ω].  p[2]’s time of birth, t[2α], falls after t[1ω] and before t[3α].  
Hence, by Axioms 4 and 5 p[1] passes to p[2].   
 
p[3] receives no existential passage, according to the Null Condition of Axiom 6B.  The birth of p[3] is an 
ex nihilo passage. 
 
 
 
 
 

t[3α]

t[2α]

p[3] 

p[2] 

p[1] 

t[1ω]

time (t)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 
 
In Figure 5, p[1] passes to p[3] according to Axioms 4 and 5.  
 
p[2] is bypassed, and is granted no existential passage, according to Axiom 6B.  The birth of p[2] is 
therefore an ex nihilo passage. 
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Note that the timeline does not show spatial relations of the persons, but only temporal relations.  Spatial 
relations will be considered irrelevant to the persons.  Existential passages will be assumed to work 
irrespective of any distance between persons.  We’ll formalize this assumption with another axiom: 
 
Axiom 7.  Action at a Distance 
 

All passage relations are strictly temporal, and are irrespective of distances between persons.  
They operate over any distance, instantaneously, with no preference for each person’s location. 

 
Again, reviewing Figure 5:  In this Figure p[3] may be either spatially near to p[1], or far from p[1].  
Regardless, p[3] must receive the passage from p[1], according to Axioms 4 and 5.  This is only re-
affirmed by Axiom 7. 
 
Axiom 8.  Merged Passages 
 

Figure 2 illustrates a “unitary passage,” wherein one person passes to another.  Axiom 5 can 
sometimes force situations wherein several persons must pass to the same recipient.  These events 
will be called “merged passages.” 

 
Figures 6, 7, 8 and 9 illustrate some merged passages. 
 
 

t[2ω]

t[3α]

p[3] 

p[2] 

p[1] 

t[1ω]

time (t)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 
 
Figure 6 illustrates a “2-to-1 passage.”  Both p[1] and p[2] pass to p[3]. 
 
p[3] is born at time t[3α].  p[3] is the first person born after the death of p[1] at t[1ω], and also after the 
death of p[2] at t[2ω].   
 
So both p[1] and p[2] must pass to p[3] according to Axioms 5 and 8. 
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t[2ω]

t[3α]

p[3] 

p[2] 

p[1] 

t[1ω]

time (t)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 
 
Figure 7 illustrates another 2-to-1 merged passage.  Again, according to Axioms 5 and 8, p[3] must receive 
the passages of p[1] and p[2]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

t[3ω]

t[2ω]

p[4] 

p[3] 

p[2] 

t[4α]

p[1] 

t[1ω]

time (t)

 
Figure 8 

 
 
Figure 8 illustrates a “3-to-1 merged passage.”  p[4] satisfies Axioms 5 and 8 for p[1], p[2] and p[3].  
Hence, all three must pass to p[4] in a 3-to-1 merged passage. 
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t[4ω]

t[3ω] 

t[2ω]

p[5] 

p[4] 

p[3] 

p[2] 

t[5α]

p[1] 

t[1ω]

time (t)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 
 
 
And Figure 9 illustrates a “4-to-1 merged passage.”  p[1], p[2], p[3], and p[4] must pass to p[5], according 
to Axioms 5 and 8. 
 
Axiom 9.  No Split Passage 
 

It will be assumed that no two events can occur at exactly the same time.  That is to say, there will 
be no “synchronous” events.  Hence, no passages will be split among multiple recipients. 

 
Figure 10 illustrates Axiom 9, by explicitly superimposing the circular international “not” symbol over a 
disallowed split passage.  (The symbol is reversed to improve the figure’s legibility.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 

time (t)

t[1ω]

p[1] 

p[2] 

p[3] 

t[2α]

t[3α]
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If we were to suppose the contrary to Axiom 9, and allow synchronous events; then in Figure 10 p[2] and 
p[3] would have synchronous births, t[2α] and t[3α] being the exact same time.  In this case p[1] would be 
forced to split passage between p[2] and p[3], according to Axiom 5.   
 
Axiom 9 assumes synchronous events to be impossible.  Therefore we assume p[1]’s passage must go to 
just one recipient; that is, whichever one person, p[2] or p[3], will be determined at random to have been 
born first after t[1ω].  In effect, Axiom 9 will force t[2α] and t[3α] to be different times.  This is the 
meaning of the superimposed “not” symbol in Figure 10:  Synchronous events will be assumed not to 
occur. 
 
Here it is worth noting that Axiom 9 may not hold true in the real world.  If nature should relax the 
conditions of synchronization through some unknown function, then split passages could be possible.  
Their occurrence in nature would seem exceedingly rare at best, but no barrier other than the practical 
difficulty of synchronization would prevent them.  (See Chapter 11 of the pubic essay for a fuller treatment 
of this possibility.)  All the same, if we are to obtain quantitative mathematical results from the current 
analysis, Axiom 9 is a formal requirement. 
 
These nine axioms set up the problems, which follow: 
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The Problems 
 
 
(P1) Determine the absolute probability of several passage types, starting with the sole  

“unparticipated” type: 
 

0-to-1 (ex nihilo) 
 
and continuing to the first five participated types: 
 
1-to-1 (unitary), 
2-to-1, 
3-to-1, 
4-to-1, and 
5-to-1.  
 
The solution of (P1) will generate the numeric values needed to complete the following table: 
 
passage type absolute probability 
0-to-1 (ex nihilo)  
1-to-1 (unitary)  
2-to-1  
3-to-1  
4-to-1  
5-to-1  

 
 

 
(P2) Determine the relative probability of merged passage with respect to unitary passage. 

 
The solution of (P2) will generate the numeric values needed to derive the following ratio: 

 
ratio relative probability 
merged : unitary  
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Developing the Algorithm 
 
 
Axiom 2, the steady-state axiom, is ambivalent and in need of clarification before formal solutions to the 
problems can be found. One way to clarify Axiom 2 is to make the population finite:  The use of the phrase 
“steady-state” in the literature of probability calculus is consistent with a finite number of states, where a 
population would be explicitly prohibited from exceeding a finite mark, although events may continue 
indefinitely.  This finite definition also allows us to manually calculate some reasonable probabilities, 
which is not possible in the infinite case.   

This also makes sense for equilibrium reasons.  In a process that may continue forever, with 
possibly an infinite number of participants, the non-simultaneity assumption of Axiom 9 becomes 
significant, and the limiting population or equilibrium probabilities become more elusive.  If the population 
could grow to infinity, one could not guarantee that the population would remain “steady” after an infinite 
number of steps. 
 For these reasons it is necessary to amend Axiom 2: 
 
Axiom 2A.  Steady State / Random Limit 
 

For some finite number N, the environment is full, at which point it is guaranteed that a person in 
the environment will pass away before a new person is born. 

  
Let   Uj  {  j=0, 1, ... n  }   denote that there are currently j persons in the environment.  Although the events 
marking birth and death of persons are time dependent, we are only interested, for the sake of calculating 
probabilities, in the sequence of increments and decrements and not the temporal qualities.  For this reason, 
we only calculate probabilities of changed states: not those for unchanged states.  Thus, although the 
environment may remain in a certain state Ui from one time unit to the next, we will only consider events 
that result in a change from Ui : 
 

either 
  

Ui               Ui+1    or     Ui               Ui-1 .

Let’s consider the changes in state which are possible when we begin at state Ui .  We will go either to Ui-1  
or Ui+1 , with probabilities qi or pi respectively. 
 

            qi  

Ui-1               Ui                Ui+1   
                               pi 

 
 
 
 
Also, these are the only possible events; and so their combined probabilities always sum to 1. 
 

pi  + qi  = 1 
 
There must be a distinct p and q for all states of the system.  And so we have this graph for the system: 
 
             q1                         q2                       q3                         qN-1                        qN 

U0               U1                U2                K                UN-1               UN 
          p0                        p1                        p2                         pN-2                       pN-1

(1) 
 
 

} 0 is the minimum number of persons. 
N is the maximum number of persons. 

q0 = 0 and p0 = 1 
qN = 1 and pN = 0 

 
 
The system is reflected at U0 and UN .  That is to say: 
 

 U0 → U1  and  UN → UN-1 ,   both with a probability of 1. 
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Also, because the system only considers changes to the states U, no state transitions to itself.  Graphically, 
we deny this by placing an “X” on the disallowed self-transition: 

 
 
 
 

 
This condition will correspond later on as “zeros on the diagonal” of the transition matrix for this system. 

 
  Ui-1               Ui                Ui+1     

X
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Calculating Probabilities 
 
 
The system’s transition matrix will be essential to the probability calculations.  To set up a transition 
matrix, it will be necessary to choose an arbitrary “equilibrium point” so as to fix the matrix values.  An 
example shows how these values are derived: 

Let’s suppose that an environment is guaranteed to hold only a finite number of persons, as 
according to Axiom 2A.  And after recording the results of a sufficiently high number of events we notice 
that when there are four persons the environment has reached an equilibrium point, wherein exactly 50% of 
the time, one or the other of two conditions occurs: 

 
(B) Birth:  A new person is born somewhere in the environment before one of the 

environment’s existing persons passes away. 
 

(D) Death:  One of the four persons passes away before a new person is born into the four-
person environment. 

 
Thus at the equilibrium point the probability of (B) equals the probability of (D): 
 
 P(B) = P(D) = 1/2 at the chosen equilibrium point ( U4 ). 

 
From this equilibrium starting point, we can deduce the probabilities which will apply when more persons 
are added to the same environment.  For example, we can consider what would happen if the population 
were to double, moving the environment from four persons to eight ( U8 ).  When there are eight persons, 
P(B) = 1/3 , by the following reasoning: 
 
Consider the timeline illustration below: 
 
  
 
 
 
 
  →time   

 
Eight persons are here in the environment.  If we divide in half, as below: 
 
  
 
 
 
 
 
 
 
  

→

Group 2

Group 1

#5
#6
#7
#8

#1
#2
#3
#4

time  

 
we get two sub-environments of four persons each.  We call them Group 1 and Group 2.  If we consider the 
persons in each group distinctly, we get two distinct versions of (D): 
 

(D1) One of the four persons  (#1, #2, #3 or #4) passes away before a new person is born 
anywhere in the environment of Group 1. 
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(D2) One of the four persons  (#5, #6, #7 or #8) passes away before a new person is born 
anywhere in the environment of Group 2. 

   
We know from the definition of the equilibrium point that P(D1) = 1/2.   
 
Likewise we know that P(D2) = 1/2.   

 
A condition (D) can occur independently either in Group 1 or Group 2.  Neither (D1) nor (D2) determines 
the overall state of the entire environment – only the state of that group of four persons in which (D) has 
occurred.  (If a person passes away in Group 1 before the next birth, it does not necessarily follow that a 
person will pass away in Group 2 before the next birth.)  

But if (B) occurs in either Group 1 or Group 2, (B) occurs for the entire environment.  Any birth 
determines the state of the entire environment.  By explicit definition, that birth need occur only once, 
anywhere in the environment, to force the entire environment to (B). 

And so by this reasoning: 
 
P(B) = P(D1) = P(D2) 
 
while the sum of all probabilities must sum to 1.  Therefore, 
 
P(B) + P(D1) + P(D2) = 1 
 
So while the environment is in a state of eight persons ( U8 ),  
 
P(B) =  1/3  and   P(D) = 2/3  { where D is the event D1 or D2 }  

 
Now, condition (D) can be restated in terms of existential passages.  In a four-person environment, 
condition (D) is precisely a 4-to-1 merged passage.  In an eight-person environment, condition (D) is 
precisely an 8-to-1 merged passage.   And in an environment with N persons, condition (D) equates with an 
n-to-1 merged passage.  So these conditions will map to a transition matrix of the system’s passage 
probabilities. 

We will use these equilibrium results to prepare a transition matrix which will churn out the 
particular numeric values needed to solve problems (P1) and (P2).  But before we can use the transition 
matrix, we must first derive a theorem which will render the matrix values meaningful. 
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Theorem for Calculating Probabilities   
 
(with a proof to follow) 
 
 
The absolute probability of an n-tuple passage in an N-person system is: 

 
 
 

Σ P( Ui ) pi 
0

N-1

i=1

 
 
(2)  (for n = 0)        P(0-passage) =   

 
 

 

Σ P( Ui+1 ) 
0

N-1

i=0

 
 
 

Σ P( Ui+n ) pi qi+1 qi+2 … qi+n 
0

N-n

i=0

  
 
(3)  (for N ≥ n > 0)      P(n-passage) =   

 
 
 

Σ P( Ui+1 ) 
0

N-1

i=0
 
 

 
where: 
 
P(0-passage) = the probability of an ex nihilo passage, or a “grant of zero passages.”  
 
P(n-passage) = the probability of an n -tuple passage, or a “grant of n passages.” 
 
pi = probability of event Bj ( going from state Uj to Uj+1 -- a birth). 
 
qi =   probability of event Dj ( going from state Uj to Uj-1 -- a death). 
 
            = probability of being in state Uj (j persons) when the most recent birth is k events 
removed.  Said another way, the last k events were deaths. 
P(Uj   )k 

 
We have introduced some notation for the types of passages.  Three different notational terms will be used 
throughout the equations, and their verbose equivalents should be remembered: 

 
P(0-passage) := the probability of an ex nihilo passage. 
P(n-passage) := the probability of an n-tuple passage. 
P(any passage) := the probability of any passage. 

 
Now, stating the meaning of (2) and (3) (again, with a proof to follow): 

 
(2) states the absolute probability of an ex nihilo passage as the sum of the probabilities of independent ex 
nihilo passages, divided by the sum of the probabilities of any passage. 

 
(3) states the absolute probability of an n-tuple passage as the sum of the probabilities of independent n-
tuple passages, divided by the sum of the probabilities of any passage. 

 
Note that (2) is just a special case of (3). 
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Eventually we will choose numeric values for the terms and calculate the probabilities.  But first it is 
necessary to present a proof of the theorem.  First we prove (2), which calculates the ex nihilo passage 
probability.  Then we prove the more general (3), which calculates the higher-order passage probabilities. 

 
The proof will require the following result:  No matter what the starting condition, after a sufficiently large 
number of steps the probability of being in state Uj remains constant at λ j .  In other words: 
 
(4) P(Uj) = λ j 

 
This result follows from the definition of the limiting transition matrix Λ, where: 
 
  

 
Λ  =  E-lim Qn   =  [ ]  

n→∞ 
λ||λ|λ|λ L

 
This is the definition of the Euler Limit.  This definition, labeled as number (5), is provided in the 
following section, “Reference Definitions and Theorems.” 
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Reference Definitions and Theorems 
 
 
The definitions and theorems of this calculus follow from John G. Kemeny and J. Laurie Snell, Finite 
Markov Chains (Princeton: D. Van Nostrand Company, 1960) 25, 35-39, 99-100.   
 
For additional references to these topics see William Feller, An Introduction to Probability Theory and Its 
Applications, vol. I,  2nd edition (New York: John Wiley & Sons, 1957). See especially “Waiting Line And 
Servicing Problems,” in Feller 413-21. 
 
Definition: n-th Step Transition Matrix Probabilities 
 
(from Kemeny 25, Definition 2.1.2) 
 
The n-th step transition matrix probabilities for a Markov process, denoted by pij (n) are: 
 
 pij(n)  =  P [ fn = Uj | fn-1  = Ui ]  , where: 
 
 pij(n)  :=  the probability of going from i to j 
 

P [ fn = Uj | fn-1 = Ui ]  :=  the probability of being in Uj at the nth step, given that the system was  
in Ui at the n-1 step 

 
We have simplified Kemeny’s notation.  In simplified notation: 

 
pi,i+1 = pi 
pi,i-1 = qi  
pi,j = 0 , for j ≠ i ± 1  
 

 
Definition: Finite Markov Chain 
 
(from Kemeny 25, Definition 2.1.3) 
 
A finite Markov Chain is a finite Markov process such that the transition probabilities pij(n) do not depend 
on n.  (That is to say, the process is time-independent, so we can drop n.)  In this case they are denoted by 
pij .   The elements ( U ) are called states. 
 
Definition:  Transition Matrix for a Markov Chain 
 
(from Kemeny 25, Definition 2.1.4) 
 
The transition matrix for a Markov Chain is the matrix P with entries pij .   The initial probability vector is 
the vector   
 
  π0  =  { Pj }  =  { P [ f0 = Uj ] }  0

 
where Uj is the initial state. 
 
Definition:  Ergodic Set 
 
(from Kemeny 35-39, Section 2.4) 
 
An ergodic set is the set of states that can travel within their set.  They “communicate.”  e.g.: 
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  6 5 
                              q3                        

                                                 p3                    
4 3 2  1 

 
 
 
 
Here { 1, 2, 3 } and { 4, 5, 6 } comprise two ergodic sets.  A chain consisting of a single ergodic set is 
called an “ergodic chain.”  The system under consideration in the current problem is an example of an 
ergodic chain. 
 
 Theorem:  Euler-Summable Sequence 
 
(from Kemeny 99-100, Theorem 5.1.1) 
 
Given a sequence { Si },  let 
 

wn  =  ∑ (   ) kn-i (1-k)i Si        for some 0 <  k < 1 n 
i 

n 

i=0 

 
 
 
If the sequence   w1, w2, …, wn, … converges to w, then the original sequence { Si } is Euler-summable. 
 
This theorem is developed further:  
 
Theorem:  Euler-Summable Limiting Matrix 
 
(from Kemeny 99-100, Theorem 5.1.1) 
 
For any ergodic chain the sequence of powers Pn is Euler-summable to a limiting matrix A, and this 
limiting matrix is of the form A = ξα , where α is a position vector. 
 

 
A  =   [ ]αααα |||| L

 
 
 
 
For example, if: 
 

α  =         then        A  =   





















1.
1.

15.
4.
25.





















1.1.1.1.1.
1.1.1.1.1.

15.15.15.15.15.
4.4.4.4.4.
25.25.25.25.25.

 
 
Theorem:  Replacing Limiting Matrix With Euler-Limit  
 
(from Kemeny 100, Theorem 5.1.2) 
 
If P is an ergodic transition matrix, and A and α as above, then: 
 

(a) For any probability vector π, the sequence         is Euler-summable to α .  π
n

P
 
(b) The vector α is the unique fixed probability vector of P. 
 
(c) PA = AP = A  ( Which is the same as saying QΛ = Λ . ) 
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These two theorems can be interpreted as saying that the long-range predictions are independent of the 
initial vector π0.  By solving Q λ =  λ we have found the unique solution, as in (b); that gives the 
probability after a large number of trials, irrespective of the initial vector π0, i.e.: 

 
λ  =    lim (   ) kn-i (1-k)i Qn π0       n 

i n→∞ 
 

 
Our Euler-summable limiting matrix becomes the Euler Limit (E-lim) of Qn, rather than the limit itself: 
 

 
Λ  =  E-lim Qn   =  [ ]  

n→∞ 
λ||λ|λ|λ L

 
(5) 

 
 
Note:  Application of Euler Limits to Kemeny’s Finite Markov Chain 

 
Suppose, for simplicity, we have N=2 (at most two persons in the system), and a resulting 3 × 3 matrix Q. 

 

Q =   














00
101
00

q

p

 

with α =     such that Q α =  α . (Note that all columns add to 1.) 














c
b
a

 

Consider first an initial position vector  π0  =   














r
q
p

 
Which is to say that the probability is p that there will be 0 persons at the start;  q that there will be 1 
persons at the start; and r that there will be 2 persons at the start. 

 
The vector is such that q ≠ 0 and q ≠ 1, so it is not the case that both p = 0 and r = 0.  

 
Apply Q to π0.  After one event, the system will be in state Qπ0.  After two events, it will be in Q2π0.  After 
three events, it will be in Q3π0.  And so on.  The limit of  Qn π0  as n →∞ will actually be the vector α ; i.e., 

  
lim Qn π0  =  α 
n→∞ 

 
 

So in this simplified case we don’t need the Euler Limit; the actual limit can be obtained.  To obtain that 
limit, we consider π1 with one of the following possibilities: 

 
(a) p = 1, or 
(b) q = 1, or 
(c) r = 1 
 

We will choose (a), arbitrarily.  So:  π1  =  














0
0
1
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We start with no persons, so the next event must add one person:    Qπ1  =  














0
1
0

The population can go either up or down:    Q2π1  =  














q

p
0

Thereafter the population must return to one:    Q3π1  =  














0
1
0

This pattern repeats indefinitely:  
 

(6)    Q2nπ1  = ,     Q2n+1π1  =  ,    ∀ n 














q

p
0















0
1
0

 
Again, we state the Euler Limit for this system (which is the same as the actual limit): 

 
 
 
E-lim Qn π0  =  α 

n→∞ 

and we see from (5) that the limit is an “average” of the two states: 
 















q

p
0 ,    















0
1
0

 
Our solution, Q, is in fact a two-cycle ergodic transition matrix (for any N).  This only becomes apparent 
when we start in a state π1 with either 

 
(i) At the start there is assuredly an even number of persons, or 
(ii) At the start there is assuredly an odd number of persons. 
 

e.g.:  will alternate; as will  , provided p + q = 1. 














1/2
0

1/2













q

p
0

 
In solving for Qλ = λ, we are simply substituting the vector α with the equivalent vector λ.  And so we see 
that at the limit, the solution may actually alternate between two vectors that average to λ.  To use the 
desired result, we may have to assume that: { Not (i) and Not (ii).}  That is, we will assume that there is at 
least a small probability ε1 that the system started with an odd number of persons; and at least a small 
probability ε2 that the system started with an even number of persons.  Granted this assumption, we can 
solve the system. 
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Proof of Theorems 
 
 

Returning now to the theorems to be proved (and problems to be solved).  Restating (2), which is the 
theorem giving the absolute probability for ex nihilo passages: 
 

Σ P( Ui ) pi 
0

N-1

i=1

 
 
(2)  (for n = 0)        P(0-passage) =   

 
 
 
 Σ P( Ui+1 ) 

0
N-1

i=0
 
 
To prove (2) we will derive the denominator of the equation first, and then the numerator.  

  
Deriving the denominator:   

 
Denominator = the sum of the probabilities of any passage 
 

We can calculate the probability that the next event will be a birth; resulting in any passage.  From our 
reference definitions and theorems we know that our limiting state is stable, i.e. QΛ = Λ.  And so the 
probability that the next event will be an ex nihilo passage is exactly the same as the probability that the last 
event was any passage.   

Looking at it another way:  If the last event was a passage, we know that the last event 
corresponded with a birth, as only a birth event can cause a passage.  That birth effectively removed all 
passage participants from their states of mortal amnesia, wiping the slate clean.  No persons then remained 
in mortal amnesia to participate in any passages thereafter.  So if that “slate-cleaning” birth is followed 
immediately thereafter by another birth, then the second birth must produce an ex nihilo passage; as no 
persons remain in mortal amnesia to participate in that second passage. 

So deriving the denominator:  The probability that the next event will be an ex nihilo passage is 
the same as the probability that “the slate has been cleaned” by some passage previously; such that “the 
queue has been emptied.” 

We get the sum total probability for any passage by summing all of the N possible states Ui for 
which any passage can occur: 

 
 

Σ
i=1

N

P(Ui   )0 (7)  
 
P(any passage) =

 
The next event will be a birth, producing ex nihilo passage from state Ui to Ui+1 .  Expressed in the same 
notation as was used in (6), its probability is: 
 
 

Σ
i=0

N-1

P(Ui+1 ) 0 
 (8) P(any passage) =
 

 
The probability of (8) is, as we’ve seen, exactly the same as that of (7).  This proves the derivation of the 
denominator of (2). 

 
Deriving the numerator:   

 
Numerator = the sum of the probabilities of independent ex nihilo passages 
 

The sufficient and necessary conditions for an ex nihilo passage at state Ui are that: 
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1. the event preceding Ui  is a birth, and 
2. the event at Ui is a birth. 
 
 
 

          Bi-1               Bi  

Ui-1               Ui                Ui+1   
  

   
Putting it another way:  If Bi-1 “emptied the queue” with a birth, then Bi, which is another birth, must 
produce an ex nihilo passage. 
 This requires that the state prior to Bi-1 must have been Ui-1 .  Synonymously, we are in state Ui 
with a history of       .  Again,        states that Ui has “emptied the queue” of pending passages.  The 
probability of an ex nihilo passage at state Ui can be expressed as the probability of a “grant of zero 
passages,” or of a “0-passage” at Ui . 

Ui  0 Ui  0 

And this probability can be equated with the probability that the system has reached Ui through an 
ex nihilo passage, multiplied by the probability of event Bi.   Expressing this probability as the product of 
two factors, it becomes: 

 
 
 
P(Ui ) × pi  0 

We will symbolize the probability of event x at state y as: P(x | y).  Hence: 
 
(9) P(Ui ) pi  0 

 P(0-passage | Ui)  = 
 

=   P(Bi-1 | Ui-1)  P(Ui-1)  P(Bi | Ui)   
 

=  ( pi-1 )(λi-1)( pi)       { after (4) }  
The derived equation becomes:  
 
(10) P(0-passage | Ui)  = pi-1 λi-1 pi   

 
which can be calculated from the limiting matrix Qn as n → ∞ , after (5). 

 
Also, we know that a given passage can be of only one type.  Consequently, these events are independent; 
which is to say that an ex nihilo passage Uj  at a given time is independent of an ex nihilo passage at Uk , 
provided j ≠ k . 
 Additionally, these events are exhaustive (i.e., inclusive); because a given ex nihilo passage will 
always fit one of these categories, and no other. 

So to finish deriving the denominator:   
 
As shown previously: 
 
 P(0-passage | Ui)  =   P(Ui ) pi  0 

 
An ex nihilo passage can only occur in states U1 to UN-1 .  And so the sum of the probabilities of 
independent ex nihilo passages is: 
 
  
  Σ 

i=1 

N-1 
P( Ui ) pi 

0 

 
 

This proves the derivation of the numerator of (2). 
 
Conclusion of Proof of (2) 
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At this point both the numerator and denominator have been proved.  Putting them together: 
 
The absolute probability of an ex nihilo passage is the sum of the probabilities of independent ex nihilo 
passages, divided by the sum of the probabilities of any passage: 
 
 

Σ P( Ui pi  ) 0
N-1

i=1

  
 
(for n = 0)        P(0-passage) =   

 
 
 

Σ P( Ui+1 ) 
0

N-1

i=0
 
 
This proves (2). 
 
Proof of (3): 
 
Restating (3), the theorem giving the absolute probabilities for unitary and merged passages: 
 

Σ P( Ui+n ) pi qi+1 qi+2 … qi+n 
0

N-n

i=0

  
 
(3)  (for N ≥ n > 0)      P(n-passage) =   

 
 
 Σ P( Ui+1 ) 

0
N-1

i=0
 
 
 
Sufficient and necessary conditions for an n-tuple passage at state Ui  are that: 
 

1. the last birth is n events removed, and 
2. the event at Ui is Bi . 

  
Graphically, 

 
 
 
 

        Bi+n-1             Di+n              Di+n-1 

Ui+n-1            Ui+n              Ui+n-1   
 

                   Di+1             Bi  

       …                  Ui                Ui+1   
 n 

passages 
n 

deaths  
 

The history sequence requires the system be at state          exactly n events prior to the current state,       .  
How the system arrives at Ui+n-1 does not matter.  Graphically, 

Ui+n  0 Ui
n

 
 
 
 
 
 
 

                               Bi+n-1              Di+n               Di+n-1 
                    Ui+n-1                                  Ui+n-1 Ui+n  0 

Di+n  

 
Bi+n-2  

              Di+1               Bi  

       …                                Ui+1   
 n 

deaths  

  Ui  n
n 

passages 

 
 

Thus the probability of an n-tuple passage at state Ui can be stated as the product of four factors: 
 
1. the probability of a birth at Ui+n-1  (which equals that of an ex nihilo passage at Ui+n ). 
2. the probability of being in state Ui+n-1  (or λi+n-1 ). 
3. the probability of n deaths (each denoted as some Dj ).  
4. the probability of a birth at Ui . 
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This can be calculated from the limiting matrix Qn as n → ∞ , again in terms of λ, p, and q, after (9) and 
(10). 
 

 
(11) P(n-passage | Ui) =  P(Bi+n-1 | Ui+n-1 )  ×  P(Ui+n-1 )  ×  P(Di+n ) P(Di+n-1 ) … P(Di+1 )  ×  P(Bi | Ui ) 

 
  =  P(       ) ×  qi+n  qi+n-1  … qi+1   ×  pi      { per the definition of factor 1, above. } Ui+n  0 

 
  = λi+n-1   pi+n-1  qi+n  qi+n-1  … qi+1  pi      { after (9) and (10) } 
 

Note that an n-tuple passage can only occur in states U0 to UN-n .  And so we can state the absolute 
probability as: 

 

Σ 
i=0 

N-n 
P( n-passage | Ui )  

 
 
 
 

 
 
P(n-passage)   =  

P( any passage ) 
 

 
 
=   

Σ 
i=0 

N-1 
P( Ui+1 ) 

0 

Σ 
i=0 

N-n 
P( Ui ) qi+n qi+n-1 … qi+1 pi 

0  
 
 
 

 
 

Since these events are independent and exhaustive, theorem (3) is proved. 
 
Corollary:  hexatuple+ passages 
 
We can calculate the probabilities of ex nihilo, unitary, 2-to-1, 3-to-1, 4-to-1 and 5-to-1 passages directly, 
by theorem (3).  Higher-order passages need not be calculated individually:  Theorem (3) can be extended 
to calculate the sum total of hexatuple (6-to-1) and higher passage probabilities, as a whole.  
 
The probability of a hexatuple or higher passage is equal to: 

 

Σ 
i=0 

N-6 
P( Ui+6 ) qi+6 qi+5 … qi+1 

0  
 
 
 

 
 
P(6+-passage)  =  

Σ 
i=0 

N-1 
P( Ui+1 ) 

0 
 
 
 

Σ 1 - di 
5 

i=0 

 
= 

 
where di is the absolute probability of an i passage, i = 0, … , 5 . 

 
Proof: 

 
The proof of the corollary is just the derivation of its ratio formula.  This proof is straightforward. 

For this equation, note that in the proof of Theorem (3) we calculated P(n-passage | Ui) and 
summed over i to get the absolute probability.  Here we first need to determine the relative probability 
equation for higher-order passage probabilities.  This is the numerator of the corollary: 
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relative probability – numerator: 
 
P(6+-passage)   =  P(6-passage | Ui)   

      +  P(7-passage | Ui-1)   
      +  P(8-passage | Ui-2)  
      + … +  P(6+i-passage | U0)  

 
 =  P( Ui+6 ) 

0  qi+6 qi+5 …  qi+1 [ pi ] 

       + P( Ui+6 ) 
0 

 qi+6 qi+5 … qi+1 [ qi  pi-1 ] 
 

      + P( Ui+6 ) 
0 

 qi+6 qi+5 … qi+1 [ qi qi-1 pi-2 ]  
 

      + … + P( Ui+6 )
0

  qi+6 qi+5 … qi+1 [ qi qi-1… q1 p0 ]     { after (11) }  
 

=  P( Ui+6 ) 
0  qi+6 … qi+1 [pi + qi pi-1 + qi qi-1 pi-2 + … + qi qi-1… q1 p0 ]  

 
At this point, the terms in brackets at right can be eliminated.  This is because the bracketed terms are just 
the probabilities of the transitions which are possible from a starting point Ui.   
 
 pi  corresponds with an ex nihilo passage from Ui. 
 qi pi-1 corresponds with a unitary passage from Ui. 
 qi qi-1 pi-2  corresponds with a 2-to-1 passage from Ui. 
 And so on, up to: 
 qi qi-1… q1 p0 , which corresponds with an i-to-1 passage from Ui. 
 
As no other transitions are possible from state Ui , the sum of these probabilities must be 1.  Continuing the 
derivation of the numerator’s relative probability: 
 

=  P( Ui+6 ) 
0  qi+6 … qi+1 [ 1 ]  P(6+-passage) 

 
=  P( Ui+6 ) 

0  qi+6 … qi+1    
 
This proves the numerator of the corollary.   

The numerator is a relative probability.  To get the absolute probability of 6+-passage, we divide 
the numerator by the probability of any passage.  Here, the denominator is the same as in Theorem (3), 
which has already been proved. 

And so the corollary has been proved. 
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Numeric Result 
 
 
At this point we would like to introduce the two parameters required to get an actual numeric answer, rather 
than a formula solution. 

We take N, the upper limit of state, to be 12.  This posits that the system will hold at most 12 
persons. 
 
 N = 12 
 
We take p1 , the probability of B1 , to be 4/5.  This posits that the probability that a birth will transition the 
system from state U1 to state U2 is 4/5. 
 
 p1 = 4/5 
 
These two parameter values (N = 12 and p1 = 4/5) have been chosen because they will allow us to get a first 
numeric answer with a relatively small amount of manual calculation; and hence provide a concise example 
of the technique.  After we have worked through to a preliminary result using these two parameter values, 
we will change the parameters so as to produce a more accurate result.  Only the summary results of these 
lengthier calculations will be presented. 
 
So, on to preparations for a preliminary result: 
 
At this point we can use the results of  “Developing the Algorithm” and “Calculating Probabilities” 
sections.  Axiom 2A , graph (1), and  the equilibrium arguments come together to yield the following 
probability graph for this system: 
 
 
 
 
 
 

Ui 
 pi 

qi 

     1             4/5           2/3           4/7           1/2           4/9           2/5           4/11         1/3           4/13          2/7          4/15

 
U0        U1          U2          U3          U4          U5          U6          U7           U8          U9          U10         U11         U12 

    1/5           1/3           3/7           1/2           5/9           3/5          7/11          2/3          9/13          5/7          11/15          1

 
Note that the equilibrium point has again been set arbitrarily at n=4.  This choice has produced the same 
probability values around U4 and U8 as were derived before, in “Calculating Probabilities.”  We can see 
that the choice of p1 = 4/5 will fit the progression of probability terms which have been determined by our 
choice of equilibrium point, and will therefore make for easy fractional calculations.  (A different choice of 
equilibrium point would have called for a different choice of p1, and vice versa.) 
 
This graph can be expressed as a transition matrix Q ∈ M13x13 . 
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







































04/15
102/7

11/1504/13
5/701/3

9/1304/11
2/302/5

7/1104/9
3/501/2

5/904/7
1/202/3

3/704/5
1/301

1/50Q  = 

0 

0 
 
 
Let v be a vector in ℜ+13 (a positive 13-dimensional vector) with | v |sum = 1. 
 
So vi ≥ 0  and  Σ vi = 1. 
 
We can interpret v as a state vector, or probability vector.  For example: 
 
If v0 =  ( 1, 0, 0, 0, 0, …, 0 ) then we conclude the system is certain to be in state U0 . 
 
If v2 =  ( 0, 0, 1, 0, 0, …, 0 ) then we conclude the system is certain to be in state U2 . 
 
If vx =  ( 0, 1/2, 0, 1/2, 0, …, 0 ) then we conclude the system is equally likely to be either in state U1 or 
state U3. 
 
Q is the transition matrix, the matrix of transition probabilities from the current state to the next state.  To 
say that Q is the transition matrix, is to say that the product of matrix Q and the state vector v ,  (Qv), is the 
probable state of the system one event after starting in state v .  e.g., 
 
 

=  ( q1, 0, p1, 0, …, 0 ) 
1/5        4/5 

[ ]Q





















0

0
1
0

M

Qv1  =   
 
 
 
 
 
 
 
which denotes that we now have: 
 

1. q1 chance = 1/5, of being in state U0 and  
2. p1 chance = 4/5, of being in state U2 . 

  
Note that  | Qv |sum = 1 = p1 + q1 . 
  
And thus Qv can in turn be taken as a state vector.  We can therefore calculate the probable state of the 
system at each subsequent step.  For example, we can calculate the probable state of the system after two 
steps from state v1 : 
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Q (Qv1)  =  Q2 v1  =  ( 0, q1 + p1q2, 0, p1p2, 0, …, 0 )  

 U3U1
 
Thus if we start in U1 (position vector v1) then after two events (Q2) we must either be in: 
 

1. U1 (with probability q1 + p1q2), or 
2. U3 (with probability p1p2). 

 
Notice again that the probabilities sum to 1: 

 
| Q2v |sum   = q1 + p1 q2 + p1 p2  
 
    = q1 + p1( q2 + p2) 
 
    = q1 + p1 
 
    = 1 
 

We wish to solve the system Q λ =  λ, where λ is a position vector.  We get the following equations: 
 
 

1211

111210

10119

9108

897

786

675

564

453

342

231

120

01

λ4/15λ
λλ2/7λ
λ11/15λ4/13λ
λ5/7λ1/3λ
λ9/13λ4/11λ
λ2/3λ2/5λ
λ7/11λ4/9λ
λ3/5λ1/2λ
λ5/9λ4/7λ
λ1/2λ2/3λ
λ3/7λ4/5λ
λ1/3λλ
λ1/5λ

=
=+
=+
=+
=+
=+
=+
=+
=+
=+
=+
=+
=

 

The last equation ( 4/15 λ11 = λ12 ) is deducible from the others.  Thus the equations above are N equations 
in N+1 unknowns.  But using λ as a position vector, | λ |sum =1 , we get N+1 equations with N+1 unknowns, 
which can be solved with a unique solution, which is the Euler Limit.  
 

 λ  = 









































000.0
004.0
009.0
021.0
045.0
082.0
130.0
176.0
196.0
171.0
110.0
046.0
009.0









































12

11

10

9

8

7

6

5

4

3

2

1

0

λ
λ
λ
λ
λ
λ
λ
λ
λ
λ
λ
λ
λ=  
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Using the Algorithm 
 
 
The algorithm incorporates Theorems (2) and (3), and the Corollary to Theorem (3) for 6+-tuple passages. 
 
 

Σ P( Ui pi  ) 0
N-1

i=1

 
 
(2)  (for n = 0)        P(0-passage) =   

 
 
 

Σ P( Ui+1 ) 
0

N-1

i=0

 
 
 
 

Σ P( Ui+n ) pi qi+1 qi+2 … qi+n 
0

N-n

i=0

   
 
(3)  (for N ≥ n > 0)      P(n-passage) =   

 
 

Σ P( Ui+1 ) 
0

N-1

i=0

 
 
 
 
 
 

Σ P( Ui+6 ) qi+6 qi+5 … qi+1 
0

N-6

i=0

 
 
P(6+-passage) =  

 
 

corollary to (3)  

Σ P( Ui+1 ) 
0

N-1

i=0

 
 
 
 
The algorithm invokes these theorems directly, calculating the probabilities of n-tuple passage types, from 
n = 0 to n = 6+.  Thereafter, we just take a ratio of these absolute probabilities, in order to determine the 
probability of experiencing a merged passage, relative to a unitary passage. 
 
An important trick of the algorithm lies in the order of steps applied.  Normalization is not done until after 
computations are made.  In fact, we multiply the vector by the l.c.m.(“least common multiple”), l,  in order 
to “magnify” the vector.  This allows us to compute with minimal rounding error.  After we perform the 
computations, we divide by M to normalize the result.  As in the flowchart illustration below: 
 
 magnified normalized  
 
  

Λ                                 l Λ                                  l Λ 
compute 
with  lΛ 

M
 
 
Other satisfactory algorithms may be possible.
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Summary of Algorithm Steps 
 
 
I. Chose a rational p1 ( 1/2  < p1 < 1 ) 
 
II. Compute the terms of Q. 
 
III. Solve QΛ = Λ  in terms of λ0 , where  λ0  is the “free variable.” 
 
IV. Find l = l.c.m. of { ci }, and compute  

 

l Λ  =        and       M  =  













n
M ∑ ni 
n1 
n0 

N 

 
V. Compute 9 × [N+1] table values; the “magnified values.” 
 
VI. Total the nine table columns ( t0, t1, t2, t3, t4, t5, t6, t7, t8).  Divide these totals by M to normalize.    

 
For each n-tuple passage multiply by the number of participants, n, and divide by the absolute 
probability of any passage, t1.   
 
For the special case of the 6+-tuple passage, note that the total t8 is computed by the corollary to 
Theorem (3). 

 
VII. Obtain the Solution of Problem (P1) -- Absolute Probabilities:  These nine normalized totals are 

precisely the following nine absolute event probabilities: 
 
t0/M = the absolute probability of any or no event ( := 1 ) 
t1/M = the absolute probability of experiencing any passage 
t2/M / ( t1/M)  = the absolute probability of experiencing an ex nihilo passage 
1 × t3 / ( t1/M) = the absolute probability of experiencing a unitary 1-to-1 passage 
2 × t4 / ( t1/M) = the absolute probability of experiencing a 2-to-1 passage 
3 × t5 / ( t1/M) = the absolute probability of experiencing a 3-to-1 passage 
4 × t6 / ( t1/M) = the absolute probability of experiencing a 4-to-1 passage 
5 × t7 / ( t1/M)  = the absolute probability of experiencing a 5-to-1 passage 
6 × t8 / ( t1/M)  = the absolute probability of experiencing a 6+-to-1 passage 
 

VIII. Obtain the Solution of Problem (P2) -- Relative Probability:  The probability of experiencing a 
merged passage, relative to that of experiencing a unitary passage, is just the sum of all absolute 
merger probabilities divided by the absolute unitary probability.  Taking the formulae for these 
probabilities from step (VII), we get: 
 
(2t4 + 3t5 + 4t6 + 5t7 + 6t8) / t3  =  the relative probability of merged to unitary passage 
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Details of Algorithm Steps 
 
 

 The Roman numerals correspond with the numerals denoting each step in the previous section, “Summary 
of Algorithm Steps.”  
 
I. p0 = 1, by definition, as the first event in an empty system must be a birth. 

p1 = 4/5, chosen because it satisfies the requirement of (I), and because this fraction is relatively 
easy to work with.  ( We will use this fraction again when we complete the entire calculation, in 
the next section, “Parameters for a Preliminary Result.”) 

 
II.  Compute the terms of Q. 
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 Using  p0 = 1, p1 = 4/5, we can obtain fractional values for the terms of Q.   
 
 To begin these calculations, we state p1 as an expression in two variables, the numerator a and the 

denominator b.  So: 
 
 p1 = 4/5 = a/b { where a = 4 and b = 5 } 
 
 Each birth event increases the population by one.  Likewise, a comparison with the graph and 

transition matrix Q of the “Numeric Result” section shows that each birth event increases the 
denominator b by one as well.  Expressing the fraction a/b more generally, we replace “b” with 
“c”, so named because it will become a factor of the “Common denominator”: 

 
 pn = a/(c+1) { where pn-1 = a/c } 
 
 And so we find: 
 
 p2 = 4/6 
 p3 = 4/7 
 p4 = 4/8 
 p5 = 4/9  and so on. 
 
 And now moving to the terms qn . 
 
 qi  = 1 - pi   for i = 0, … , N 
 
 These formulae will make it possible for us to solve QΛ = Λ . 
 
III. Solve QΛ = Λ  in terms of λ0 , where λ0  is the “free variable.” 
 

Take λ0  as the free variable for Λ in terms of  λ0. 
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QΛ = Λ  
 

QΛ  =     =   =  =  
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Thus we obtain the following expressions for the λ  terms, expressed in fractions of p, q and a: 
 
 λ0  =  1 λ0  =  a0λ0  ∴  a0  =  1 
 
λ1  =  λ0/q1  =  a1λ0  ∴  a1  =  1/q1 
 
λ2  =  (λ1-λ0)/q2  =  a2λ0  ∴  a2  =  (a1-1)/q2 

 
 

 
 
 
 …

  
These can be generalized to: 
 
λk  =  (λk-1 - pk-2λk-2) /qk  =  akλ0 ∴  ak  =  (ak-1 - ak-2pk-2) / qk  
 
Note on the Size and Accuracy of the Finite Matrix 
 
At this point, we can note that these formulas make it possible for the algorithm to produce finite 
matrix results which are in close approximation to infinite matrix results.   To illustrate this, we 
can calculate the first few terms of ai: 
 
If p1 = 4/5, then  q1 = 1/5.  From these terms we can derive the following: 
 
p2 = 4/6  →  q2 = 2/6  ∴  a1  =  1/q1  =  5 
 
p3 = 4/7  →  q3 = 3/7  ∴ a2  =  (a1-1)/q2  =  4 / (2/6)  =  12 
 
p4 = 4/8  →  q3 = 4/8  ∴ a3  =  (a2- a1p1)/q3  =  (12 - (4/5)(6)) / (3/7)  =  56/3 
 
(These fractions can be reduced, but is it necessary to keep them in fractional form, for subsequent 
calculations.) 

 
ai will increase, peak, and then decrease.  In this case, where p1 = 4/5 , we see that ai peaks when 
i=4 and decreases thereafter.  For example, when i=12: 
 
ai = 0.105 
 
When ai is less than a0  (ai < a0 = 1 ) we can safely disregard the probabilities of higher terms as 
negligible.  Stated formally, the probabilities for these terms become: 
 
N := i+1, so: 
pi+1 = pN  = 0 
qi+1 = qN  = 1 
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In our first example, where p1 = 4/5, we can set N  = 12 for this reason.  N chosen in this manner 
will give a close estimate of the actual value of an infinite matrix.  (Although, as we will see in the 
next section, higher values of p1 and N will give estimates that are much closer.) 
 
Continuing the algorithm now: 
 
We have a solution to QΛ = Λ in the form 

 
 

Λ  =  λ0  =   
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IV. We can find the least common multiple of the denominators, ci, where i = 0, … , N 
 

l := l.c.m. { ci } 
 
Then we multiply Λ by l, in order to remove the fractions and get whole numbers, which will be 
easier to work with.  So: 
 
l Λ  will consist of whole numbers. 
 
 
 M := l

N
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Which 
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he vector Λ.  In our solution both Λ and the normalized vector  (l/M) Λ   will be 
otice that both are a solution to QΛ = Λ. ) 

 =           where ni ∈ integers. 
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 to begin with:  Any rounding errors introduced in this step will be diminished 
step (VI). 
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Table 1 – Magnified Values 

      …  
n0 n0p0 (n0p0)p1 (n0p0)q1p0 0  …  0 

… … … … …  …   …  
nN-1 nN-1pN-1 0 (nN-1pN-1)qNpN-1 (nN-1pN-1)qNqN-1pN-2  …  (nN-1pN-1)qN … qN-5 

nN 0 0 0 0  …  0 

P(Ui+1)qi … qi-5 
0 

P(Ui+1) 
0 P(Ui+1)pi 

0 P(Ui+1)qipi-1 
0 P(Ui+1)qiqi-1pi-2 

0

 
 
VI. Divide the results of step (V) by M to normalize.   

 
In theory, by normalizing at the very end of the calculations, the answers can be true to within 
(N/2)/M; accurate to several decimal places.   
 
However, we will be choosing numeric parameters for this problem which are amenable to rapid 
manual calculation, rather than the highest accuracy.  Also, we do not have a known, exact answer 
by which to gauge the accuracy of our results.  The formula derived in Chapter 13 of the public 
essay: 
 
(12) Pn  = 0.25n × (1/2) n-1 
 
is not rigorously proved to be the absolute probability formula for an infinite matrix solution. 
 
This all suggests that the parameters chosen may result in a less accurate result than theory would 
indicate.  We will see, however, that parameters can be found which produce absolute 
probabilities which consistently match those of (12) to within a 10% difference.  (These 
probabilities also match those of “Monte Carlo” simulation, as discussed in the public essay in 
Chapter 16.)  This is close enough to confirm the validity of those other, less rigorous, results. 
 

VII. Obtain the Solution of Problem (P1) -- Absolute Probabilities:  These nine normalized totals are 
precisely the following nine absolute event probabilities: 
 
t0/M = the absolute probability of any or no event ( := 1 ) 
t1/M = the absolute probability of experiencing any passage 
t2/M / ( t1/M)  = the absolute probability of experiencing an ex nihilo passage 
1 × t3 / ( t1/M) = the absolute probability of experiencing a unitary 1-to-1 passage 
2 × t4 / ( t1/M) = the absolute probability of experiencing a 2-to-1 passage 
3 × t5 / ( t1/M) = the absolute probability of experiencing a 3-to-1 passage 
4 × t6 / ( t1/M) = the absolute probability of experiencing a 4-to-1 passage 
5 × t7 / ( t1/M)  = the absolute probability of experiencing a 5-to-1 passage 
6 × t8 / ( t1/M)  = the absolute probability of experiencing a 6+-to-1 passage 
 

VIII. Obtain the Solution of Problem (P2) -- Relative Probability:  The probability of experiencing a 
merged passage, relative to that of experiencing a unitary passage, is just the sum of all absolute 
merger probabilities divided by the absolute unitary probability.  Taking the formulae for these 
probabilities from step (VII), we get: 
 
(2t4 + 3t5 + 4t6 + 5t7 + 6t8) / t3  =  the relative probability of merged to unitary passage 
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Parameters for a Preliminary Result 
 
 

 Please note:  The following steps will produce a preliminary result.  We will use parameters that give us an 
illustrative, and relatively concise, example of the algorithm “in action.”   Following on this example, a 
more accurate result will be presented in “Parameters for an Accurate Result.” 

 
 So, proceeding on to a preliminary result.  We will choose values of p1 and N which will make for a 

relatively quick calculation.  We will set p1  =  4/5 and N = 12. 
 
I. p1  =  4/5 

 

II. Q  =   
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III. We run the equations for calculation of Λ in terms of ai , where p1 = 4/5 and N = 12: 
 

Λ  =   =    =    
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IV. l :=  l.c.m. of { ci } 

 
    =  l.c.m. of { 1, 1, 3, 3, 5, 9, 315, 105, 35⋅81, 52⋅34, 11, 7⋅5⋅33, 11⋅7⋅52⋅34 } 
 
    =  11⋅7⋅52⋅34 

 
     =  155,925 
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 lΛ  =   =                 M =       ni  =  17,010,850                          ≈   
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 Note that because         is normalized, its terms sum to 1. 

lΛ 
M 

  
V. Compute 9 × [N+1] table values; the “magnified values.”  This is the table for N=12: 
 

Table 2 – Explicit Formulae for Magnified Values 

         
n0 n0p0 (n0p0)p1 (n0p0)q1p0 0 0 0 0 0 

n1 n1p1 (n1p1)p2 (n1p1) q2p1 (n1p1) q2q1p0 0 0 0 0 

n2 n2p2 (n2p2)p3 (n2p2) q3p2 (n2p2) q3q2p1 (n2p2) q3q2q1p0 0 0 0 

n3 n3p3 (n3p3)p4 (n3p3) q4p3 (n3p3) q4q3p2 (n3p3) q4q3q2p1 (n3p3) q4…q1p0 0 0 

n4 n4p4 (n4p4)p5 (n4p4) q5p4 (n4p4) q5q4p3 (n4p4) q5q4q3p2 (n4p4) q5…q2p1 (n4p4) q5…q1p0 0 

n5 n5p5 (n5p5)p6 (n5p5) q6p5 (n5p5) q6q5p4 (n5p5) q6q5q4p3 (n5p5) q6…q3p2 (n5p5) q6…q2p1 (n5p5) q6…q1 

n6 n6p6 (n6p6)p7 (n6p6) q7p6 (n6p6) q7q6p5 (n6p6) q7q6q5p4 (n6p6) q7…q4p3 (n6p6) q7…q3p2 (n6p6) q7…q2 

n7 n7p7 (n7p7)p8 (n7p7) q8p7 (n7p7) q8q7p6 (n7p7) q8q7q6p5 (n7p7) q8…q5p4 (n7p7) q8…q4p3 (n7p7) q8…q3 

n8 n8p8 (n8p8)p9 (n8p8) q9p8 (n8p8) q9q8p7 (n8p8) q9q8q7p6 (n8p8) q9…q6p5 (n8p8) q9…q5p4 (n8p8) q9…q4 

n9 n9p9 (n9p9)p10 (n9p9) q10p9 (n9p9) q10q9p8 (n9p9) q10q9q8p7 (n9p9) q10…q7p6 (n9p9) q10…q6p5 (n9p9) q10…q5 

n10 n10p10 (n10p10)p11 (n10p10) q11p10 (n10p10) q11q10p9 (n10p10) q11q10q9p8 (n10p10) q11…q8p7 (n10p10) q11…q7p6 (n10p10) q11…q6 

n11 n11p11 0 (n11p11) q12p11 (n11p11) q12q11p10 (n11p11) q12q11q10p9 (n11p11) q12…q9p8 (n11p11) q12…q8p7 (n11p11) q12…q7 

n12 0 0 0 0 0 0 0 0 

P(Ui+1) 
0 P(Ui+1 pi )0 P(Ui+1 qipi-1 )0 P(Ui+1)qiqi-1pi-2 

0 P(Ui+1)qiqi-1qi-2pi-3 
0 P(Ui+1)qi…qi-3pi-4 

0 P(Ui+1)qi…qi-4pi-5 
0 P(Ui+1)qi…qi-5

0 
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And here are the computed values: 
 

Table 3 – Calculated Magnified Values 

col. 0 col. 1 col. 2 col. 3 col. 4 col. 5 col. 6 col. 7 col. 8 

155,925 155,925 124,740 31,185 0 0 0 0 0 

779,625 623,700 415,800 166,320 41,850 0 0 0 0 

1,871,100 1,247,400 712,800 356,400 142,560 35,640 0 0 0 

2,910,600 1,663,200 831,600 475,200 237,600 95,040 23,760 0 0 

3,326,400 1,663,200 739,200 462,000 264,000 132,000 52,800 13,200 0 

2,993,760 1,330,560 532,224 354,816 221,760 126,720 63,360 25,344 6,336 

2,217,600 887,040 322,560 225,792 150,528 94,080 53,760 26,880 13,440 

1,393,920 506,880 168,960 122,880 86,016 57,344 35,840 20,480 15,360 

760,320 253,440 77,982 58,486 42,535 29,775 19,850 12,406 12,406 

366,080 112,640 32,183 24,756 18,567 13,503 9,452 6,304 7,877 

157,696 45,056 12,015 9,440 7,262 5,446 3,961 2,773 4,159 

61,440 16,384 0 4,369 3,433 2,641 1,980 1,440 2,521 

16,384 0 0 0 0 0 0 0 0 

 
 
VI. Divide the results of step (V.) by M to normalize the results.   (We designate the sum total of 

column n as tn.) 
 
For each n-tuple passage multiply by the number of participants, n, and divide by the absolute 
probability of any passage, t1.   
 
For the special case of the 6+-tuple passage, note that the total t8 is computed by the corollary to 
Theorem (3). 
 
t0/M  =  17,010,850 / 17,010,850  =  1 
 
t1/M  =  8,505,425 / 17,010,850  =  0.5 
 
t2/M / ( t1/M)  =  ( 3,970,064 / 17,010,850 ) / 0.5  =  0.4667684 
 
1 × t3 / ( t1/M)  =  1 × ( 2,291,644 / 17,010,850 ) / 0.5  =  0.2694332 
 
2 × t4 / ( t1/M)  =  2 × ( 1,215,841 / 17,010,850 ) / 0.5  =  0.2858978 
 
3 × t5 / ( t1/M)  =  3 × ( 592,189 / 17,010,850 ) / 0.5  =  0.2088746 
 
4 × t6 / ( t1/M)  =  4 × ( 264,763 / 17,010,850 ) / 0.5  =  0.1245149 
 
5 × t7 / ( t1/M)  =  5 × ( 108,825 / 17,010,850 ) / 0.5  =  0.06397388 
 
6 × t8 / ( t1/M)  =  6 × ( 62,099 / 17,010,850 ) / 0.5  =  0.04380663 

    
VII. Solution of Problem (P1) -- Absolute Probabilities: 

 
Note again that the numeric parameters for this preliminary result were selected to be amenable to 
rapid manual calculation, rather than the highest accuracy.   The following section, “Algorithm 
Steps for an Accurate Result,” will produce the more accurate result. 
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Table 4 – Absolute Probabilities 

passage type absolute probability ≈ 
0-to-1 (ex nihilo) 0.467 
1-to-1 (unitary) 0.269 
2-to-1 0.286 
3-to-1 0.209 
4-to-1 0.125 
5-to-1 0.064 
6+-to-1 0.044 

 
 
 
VIII. Solution of Problem (P2) – Relative Probability: 

 
(2t4 + 3t5 + 4t6 + 5t7 + 6t8) / t3  =  the relative probability of merged to unitary passage 
 
=  ( 2×1,215,841 + 3×592,189 + 4×264,763 + 5×108,825 + 6×62,099 ) / 2,291,644 
 
=  2.70 
 
And so step (VIII) tells us that merged passages are 2.70 times as likely as unitary passages.   
 
 
Printing the results of steps (VII) and (VIII) together, the solution tables for problems (P1) and 
(P2) are: 
 

       Table 5 – Absolute Probabilities 

passage type absolute probability ≈ 
0-to-1 (ex nihilo) 0.467 
1-to-1 (unitary) 0.269 
2-to-1 0.286 
3-to-1 0.209 
4-to-1 0.125 
5-to-1 0.064 

 

        Table 6 – Relative Probability 

ratio relative probability ≈ 
Merged : unitary 2.70 

 
  
 
Again, the numeric parameters for this preliminary result were selected to be amenable to rapid 
manual calculation, rather than the highest accuracy.   The following section, “Parameters for an 
Accurate Result,” will produce the more accurate result, which we will review afterwards in 
“Discussion of Results”. 

 

 
© 1999 Wayne Stewart Appendix A – Formal Probability Calculus 40 



 

Parameters for an Accurate Result 
 
 

 Please note:  The parameters in this section are chosen to give a result which is more accurate than the 
result calculated in the previous section, “Parameters for a Preliminary Result.”  All algorithm steps will be 
the same as before;  so only the more accurate results themselves will be presented, and in an abbreviated 
manner, owing to the greater length of calculations required.  Please refer to previous sections for 
explanations of each step. 
 
Here we will choose values of p1 and N which are higher than those used to obtain the preliminary result.  
We will set p1  =  9/10 and N = 22. 
 
 
I. p1  =  9/10 
 

II. Q  =   
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III. Calculating ai , where p1 = 9/10 and N = 22: 
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IV. l  = 11⋅ 7 ⋅ 52 ⋅ 28  =  492,800 
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=

22

0i M

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
V. Compute 9 × [N+1] table values; the “magnified values.”  This is the table for N=22: 
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Table 7 – Calculated Magnified Values 

col. 0 col. 1 col. 2 col. 3 col. 4 col. 5 col. 6 col. 7 col. 8 

492,800 492,800 443,520 49,280 0 0 0 0 0 

4,928,000 4,435,200 3,628,800 725,760 80,640 0 0 0 0 

24,393,600 19,958,400 14,968,800 4,082,400 816,480 90,720 0 0 0 

79,833,600 59,875,200 41,452,062 13,817,354 3,768,369 753,674 83,742 0 0 

194,594,400 134,719,200 86,605,200 33,309,692 11,103,231 3,028,154 605,631 67,292 0 

377,213,760 242,494,560 145,496,736 62,355,744 23,982,978 7,994,326 2,180,271 436,054 48,450 

606,236,400 363,741,840 204,604,785 95,482,233 40,920,957 15,738,830 5,246,277 1,430,803 317,956 

831,409,920 467,668,808 247,588,983 123,794,492 57,770,763 24,758,898 9,522,653 3,174,218 1,058,073 

993,794,670 526,126,590 263,063,295 139,268,803 69,634,402 32,496,054 13,926,880 5,356,492 2,380,663 

1,052,253,180 526,126,590 249,217,858 138,454,366 73,299,370 36,649,685 17,103,186 7,329,937 4,072,187 

999,640,521 473,513,931 213,081,269 123,362,840 68,534,911 36,283,188 18,141,594 8,466,077 5,644,051 

860,934,420 387,420,489 166,037,352 99,622,411 57,676,133 32,042,296 16,963,569 8,481,784 6,596,943 

677,985,856 290,565,361 118,867,650 73,584,736 44,150,841 25,561,013 14,200,563 7,517,945 6,682,618 

491,726,005 201,160,638 78,715,032 50,091,384 31,008,952 18,605,371 10,771,531 5,984,184 5,984,184 

330,478,192 129,317,553 48,494,083 31,626,576 20,126,003 12,458,954 7,475,372 4,327,847 4,808,719 

206,908,085 77,590,532 27,932,591 18,621,728 12,144,605 7,728,385 4,784,238 2,870,543 3,508,441 

121,235,206 43,644,674 15,107,772 10,273,285 6,848,857 4,466,646 2,842,411 1,759,588 2,346,117 

66,750,678 23,106,004 7,702,001 5,332,155 3,625,865 2,417,243 1,576,463 1,003,204 1,449,072 

34,659,006 11,553,002 3,713,465 2,613,179 1,809,124 1,230,204 820,136 534,871 832,022 

17,025,477 5,472,475 1,698,354 1,213,110 853,670 591,002 401,882 267,921 446,535 

7,935,088 2,462,614 738,784 534,982 382,130 268,906 186,166 126,593 225,054 

3,518,019 1,055,406 0 316,622 229,278 163,770 115,245 79,785 150,706 

1,055,406 0 0 0 0 0 0 0 0 

 
 
VI. Normalize the results: 
 

 
t0/M  =  7,985,002,289 / 7,985,002,289  =  1 
 
t1/M  =  3,992,501,145 / 7,985,002,289  =  0.5 
 
t2/M / ( t1/M)  =  ( 1,939,158,392  / 7,985,002,289 ) / 0.5  =  0.485700 
 
1 × t3 / ( t1/M)  =  1 × ( 1,028,533,172 / 7,985,002,289 ) / 0.5  =  0.257616 
 
2 × t4 / ( t1/M)  =  2 × ( 528,767,559 / 7,985,002,289 ) / 0.5  =  0.26488 
 
3 × t5 / ( t1/M)  =  3 × ( 263,327,319 / 7,985,002,289 ) / 0.5  =  0.197865 
 
4 × t6 / ( t1/M)  =  4 × ( 126,947,810 / 7,985,002,289 ) / 0.5  =  0.127188 
 
5 × t7 / ( t1/M)  =  5 × ( 59,215,138 / 7,985,002,289 ) / 0.5  =  0.074155 
 
6 × t8 / ( t1/M)  =  6 × ( 46,551,791 / 7,985,002,289 ) / 0.5  =  0.07002 

    
 
 
VII. Solution of Problem (P1) -- Absolute Probabilities: 

 
Note again that this result is more accurate than the preliminary result calculated previously.  This 
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more accurate result, and the result in (VIII) below, will be reviewed hereafter in “Discussion of 
Results”. 

         Table 8 – Absolute Probabilities 

passage type absolute probability 
ex nihilo 0.486 
unitary 0.258 
2-to-1 0.265 
3-to-1 0.198 
4-to-1 0.127 
5-to-1 0.074 
6+-to-1 0.070 

 
 
VIII. Solution of Problem (P2) -- Relative Probability: 

 
(2t4 + 3t5 + 4t6 + 5t7 + 6t8) / t3  =  the relative probability of merged to unitary passage 
 
=  ( 2×528,767,559 + 3×263,327,319 + 4×126,947,810 + 5×59,215,138 + 6×46,551,791 ) / 1,028,533,172 
 
= 2.85 
 
And so step (VIII) tells us that merged passages are 2.85 times as likely as unitary passages.   
 

 
Printing the results of steps (VII) and (VIII) together, the solution tables for problems (P1) and 
(P2) are: 
 
 

       Table 9 – Absolute Probabilities 

passage type absolute probability 
0-to-1 (ex nihilo) 0.486 
1-to-1 (unitary) 0.258 
2-to-1 0.265 
3-to-1 0.198 
4-to-1 0.127 
5-to-1 0.074 

 
 

        Table 10 – Relative Probability 

ratio relative probability 
Merged : unitary 2.85 

 
 

These results are intended to be more accurate than the preliminary results obtained in the 
previous section.  For a side-by-side comparison of several result sets, see “Discussion of 
Results”, which follows. 
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Discussion of Results 
 
 
In the previous two sections, two different choices of starting parameters p1 and N were used, and results 
were obtained for both.  Altogether, a total of five combinations of  p1 and N have been tried during 
preparation of this appendix document.  Results for the five different parameter combinations are 
tabularized below: 
 
 
  

Table 11 – Comparison of Results 

  ∗ 
        most accurate 

 
 p1=3/4, N=11 p1=4/5, N=12 p1=4/5, N=18 p1=9/10, N=12 p1=9/10, N=22 theoretical 
ex nihilo 0.455 0.467 0.467 0.458 0.486 0.500 
unitary 0.278 0.269 0.269 0.283 0.258 0.250 
2-to-1 0.299 0.286 0.286 0.281 0.265 0.250 
3-to-1 0.213 0.209 0.209 0.200 0.198 0.188 
4-to-1 0.120 0.125 0.125 0.120 0.127 0.125 
5-to-1 0.055 0.064 0.064 0.064 0.074 0.078 
merged/unitary 2.60 2.70 2.70 2.51 2.85 3.00 

 
 
 
 
Table 11 brings together five sets of calculated results for comparison.  Each row is labeled at left with the 
type of passage event probability calculated.   Before comparing the numbers, we should review the 
meaning of each of these probabilities: 

The only participant in an ex nihilo passage is the person born; no one “passes” to the recipient of 
an ex nihilo passage. 

The other absolute probabilities listed (unitary, 2-to-1, 3-to-1, 4-to-1, 5-to-1) are the probabilities 
that a person will pass through each of those particular passage types to a newborn.  The selected algorithm 
calculates individual absolute probabilities only out to 5-to-1 merged passages.  As a result, the table 
displays only the n-to-1 passages out to n=5.   The algorithm can be extended to higher-order n, but this is 
not necessary for the present purpose. 

The bottom row displays a ratio: the probability that a person will experience a merged passage, 
divided by the probability of a unitary passage.  This is the only ratio in the table, and we should recall that 
its formula makes use of the aggregate 6+-to-1 absolute probability, which is not printed in this table. 

Now, comparing the numbers to prediction:   
At far right the “theoretical” probabilities are listed.   These values are not proved to be the 

limiting and authoritative ones, but the informal probability argument provided in the essay at 
mbdefault.org in Chapters 13-16 suggests that they are.  For now we will take them as the theoretical 
values.  

The top row of each column displays the parameters used to generate each computed result set.  
The discussion works across columns from left to right, on the following page: 
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Column 1 (p1=3/4, N=11)   
This result has been computed from the lowest combination of parameter values:  3/4 is the smallest value 
of p1 we have used, and 11 is the smallest value of N we have used.  The resulting matrix Q was small, and 
its matrix element values were low fractions.  This made for a quick, but inaccurate, calculation.  If we 
compare the results listed in Column 1 against the theoretical values, we see that this result set is the 
farthest of the five from theory. 
 
Column 2 (p1=4/5, N=12)  
This result is just the “preliminary result” which we presented in detail in “Parameters for a Preliminary 
Result.”  Here we’ve increased both p1 and N in hopes of obtaining a better fit to theory.  The larger matrix, 
with higher fractions, has indeed improved the fit to theory.  All computed values are closer to their 
theoretical counterparts. 
 
Column 3 (p1=4/5, N=18)  
Here we’ve kept p1 unchanged at 4/5, and increased N to 18; in order to see what higher-order matrix 
elements alone might contribute to the solution.  As it turns out, their contribution is negligible: all values 
in Column 3 are the same as those of Column 2.  (Differences appear in the raw numbers only past the third 
significant digit.)  This is because, as we stated in Section III of “Details of Algorithm Steps,” when ai < 1 
the terms are negligible.  In this case, a18 = 0.000000, and truly negligible.  This suggests that if we are to 
increase the accuracy of the results further, it will necessary to increase p1 instead. 
 
Column 4 (p1=9/10, N=12)   
Here we have increased p1 to 9/10.   But because the matrix is small (N=12) the accuracy is not better than 
that of the previous three attempts.  And so we can conclude that it will be necessary to increase N as well. 
 
Column 5 (p1=9/10, N=22)  
Here we have increased p1 and N to their maximum values of the trial.  Note that these values are just those 
of the “more accurate result” outlined in “Parameters for an Accurate Result.”  This lengthiest calculation 
has indeed produced a more accurate result.  The values in Column 5 are clearly the best fit to the 
theoretical values.  And so Column 5 is marked with an asterisk (*) as “most accurate.” 
 
End of Appendix A. 
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